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Abstract
The mechanism of self-organization of chromatin subcom-
partments on the 0.1–1 mm scale and their impact on genome-
associated activities has long been a key aspect of research
on nuclear organization. Understanding the underlying
structure-function relationship, however, remains challenging
due to the complex hierarchical structure of chromatin and the
polymorphic organization of subcompartments that assemble
around it. Towards this goal, approaches to measure local
properties and compositional dynamics of chromatin in its
endogenous cellular environment are instrumental. Here, we
discuss recent advancements in studying these features and
their functional implications in protein and RNA enrichment
and genome accessibility.
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Introduction
Distinct chromatin states partition the genome to

locally enrich associated activities for transcription,
DNA replication, repair and recombination in a cell-
type-specific manner. Revealing the underlying
structure-function relationships is challenging due to
the complex hierarchical organization of the nucleosome
www.sciencedirect.com
chain that ranges from clusters of a few nucleosomes to
chromosome territories with largely different dynamic
properties [1]. Confined translocations of individual
nucleosomes with a mass of 240 kDa for a nucleosome
core particle occur on the nanometer and second time
scale [2��]. In contrast, micrometer-scale translocations
of chromatin loci to form CTCF-mediated loops take
place on the 10 min to hour scale [3,4]. Translocations of

whole chromosomes during interphase are hardly
detectable even on the hour scale with human chro-
mosome 1 comprising 0.25 Gb DNA and 1.2 million
nucleosomes with a total mass of 520 GDa or 0.87 pg [5].
Thus, the assignment of chromatin material properties
and the resulting implications for the enrichment of
factors and/or access to the genome will be dependent
on the length and time scales studied. Accordingly, the
generalized description of chromatin as “liquid” and
“solid” is fraught with difficulties as apparent from the
ongoing discussions in the field [2��,6e9]. Likewise,
identifying subcompartment properties that inform
about the contribution of liquideliquid phase separa-
tion (LLPS) for chromatin organization and to distin-
guish it from alternative mechanisms is critically
dependent on the time and length scales studied as
discussed previously [10].

Here we review recent approaches to measure features
of chromatin subcompartments (CSCs) that have di-
mensions on the 100 nm to mm scale and involve the
assembly of protein/RNA macromolecules around

certain chromatin loci. They include for example the
nucleolus, constitutive heterochromatin domains, clus-
ters of active RNA polymerase II or complexes of PML
bodies at telomeres [10e12] (Figure 1). Measuring the
material properties or other features of these CSCs in
the endogenous environment of the cell nucleus is
challenging but a crucial step to infer structure-function
relationships. We discuss recent advancements in the
approaches to dissect organizational principles of CSCs
and their associated functional implications with respect
to the local enrichment of protein and RNA factors as

well as regulating access to the genome.
Measuring intrinsic CSC features
A number of recent studies introduce novel approaches
to provide information on intrinsic properties of CSCs in
the cell nucleus (Table 1).
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Figure 1

Organization of the cell nucleus into distinct chromatin domains and mobile nuclear bodies that locally enrich protein and RNA factors. The
scheme illustrates what is seen by high-resolution fluorescence microscopy upon staining marker proteins and DNA with exemplary chromatin
subcompartments shown on the magnified images. CSC properties as listed on the right side can be largely different, which has a number of functional
implications for the genome-associated activities that are enriched in these CSCs.

2 3D Genome Chromatin Organization and Regulation (2023)
Frequently, the local composition of a CSC with respect
to its DNA, protein and RNA content is not well defined
with large differences in the relative abundance of the
different types of macromolecules. For example, the
nucleolus is filled with protein and ribosomal RNAs but
has a low density of DNA. In contrast, heterochromatin
domains are enriched in DNA but mostly devoid of

RNA. Both have implications on the mechanism that
underlie their assembly [10]. By introducing fluorescent
tags into 1310 genes in human embryonic kidney (HEK)
293Tcell lines, the intracellular location, abundance and
interactions of the corresponding proteins were
measured with combination of live cell confocal fluo-
rescence microscopy and mass spectrometry [13�]. With
respect to the local DNA content/density, it is important
to note that this value will depend on the spatial reso-
lution as differences are averaged upon increasing the
observation volume. Recent high-resolution measure-

ments by single-molecule localization microscopy show
large variations of the local DNA density ranging from
<5 to >300 Mb/mm3 in human and mouse cell nuclei
[14�]. This is in line with previous findings from high-
resolution microscopy that revealed chromatin density
variations due to its organization into nucleosome
clutches of variable size and density [49]. The local
chromatin compaction and crowding can also be probed
by using molecular sensors that employ crowding-sen-
sitive linkers [17] or by directly detecting structural
changes in CSCs via measurement of fluorescently
labeled marker proteins [15�,16�]. In this manner,

compaction of heterochromatic regions in embryonic
stem cells was shown to be lower than expected and
dependent on differentiation state and a balance of
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heterochromatin protein 1 (HP1) isoforms [15�].
Finally, methodological advancements to identify RNAs
associated with specific CSCs by sequencing methods
make it possible to simultaneously map interacting
DNA loci and associated RNAs [18,19].

The different macromolecular content and density of

CSCs are also reflected in their viscosity. A systematic
analysis of the length-scale-dependent intracellular
viscosity was conducted with a set of nanoprobes from 1
to 150 nm diameter in the cytoplasm that yielded a
liquid-like behavior for length scales below 100 nm and
more gel-like properties for larger length scales [21].
This approach can also be exploited to detect local
intracellular viscosity differences. However, a higher
spatial resolution is provided by polarization-dependent
fluorescence correlation spectroscopy [20]. It was
applied to study the local viscosity experienced by HP1

inside and outside heterochromatin compartments.
Another approach to test CSC material properties is to
employ environment-sensing nanoprobes attached to
peptides [22]. This was demonstrated for a polarity-
sensing photoactivatable probe targeted to HP1-
marked domains.

To measure protein dynamics in CSCs in comparison to
the surrounding nucleoplasm, fluorescence recovery
after photobleaching (FRAP) is a well-established
method. However, as discussed previously, the absolute
values of measured recovery times and apparent diffu-

sion coefficient or kinetic dissociation rates are not suf-
ficient to determine whether a protein of interest has
liquid-like protein dynamics within a CSC as expected
www.sciencedirect.com
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Table 1

Approaches to measure intrinsic features of CSCs and perturbing them.

Intrinsic CSC properties
Property Techniques References

DNA, protein and RNA content Mass spectrometry; fluorescence microscopy; sequencing [13�,14�,15�,16�,17,18,19]
Viscosity and polarity Polarization-dependent fluorescence correlation spectroscopy;

nanoprobes
[20–22]

Liquid-like protein dynamics Half-bleach FRAP [20�,23��]
Genome/chromatin access Single particle tracking [24�,24,25]
Chromatin translocations Tracking of fluorescently labeled chromatin loci over time [2��,3,4,26,27,28,29]
Perturbances of CSCs
Targeted feature Techniques References

Concentration-dependent assembly and
associated activity

Phase separation propensity analysis; transcription response
below/above the concentration of droplet formation

[30,31��,32��,33].

IDR mediated protein interactions IDR engineering, exchange/addition of IDR or introducing
changes of amino acid patterns in IDR

[31,32,34–39]

Protein condensates dCas9-targeted, (light-)induced increase in multivalency of
fusion proteins; ligand mediated disassembly; 1,6-hexanediol
treatment

[23,31��,40–46]

Interactions between nucleosome chain
segments

Applying external point force or capillary forces; CRISPR-
mediated chromatin looping

[47��,48�]
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for LLPS [50]. This issue is addressed by FRAP exper-
iments in which only one half of a CSC is bleached
[20,23��]. This approach separates the contributions of
fluorescence recovery arising from exchange with mole-
cules in the unbleached half of the CSC from recovery by
molecules from the nucleoplasm surrounding the CSC
that cross the CSC boundary and diffuse into its interior.
The resulting ratio of fluorescence recovery from internal
mixing vs. exchange across the CSC boundary can then
be used to distinguish LLPS, which is characterized by
preferential internal mixing, from other mechanisms like

chromatin binding to clustered sites.

A crucial functional feature that arises from CSC
properties is their regulation of genome access that
could be determined via the chemical nature of a given
factor or its size [10]. Genome accessibility is particu-
larly relevant for regulatory proteins like transcription
factors (TFs) that activate or repress transcription. It
can be probed by single particle tracking to reveal nu-
clear regions of confined particle mobility that could
locally accelerate the target search process. This type of

transition between different mobility modes was shown
for the p53 tumor-suppressor protein, which alternates
between rapid diffusion in nuclear regions devoid of
chromatin and confined mobility when interrogating
chromatin-dense regions [24�]. Furthermore, several
other studies established that the interactions of
intrinsically disordered regions (IDRs) found in many
TF activation domains significantly contribute to the
target search and binding process [51e53]. In addition,
it is noteworthy that access to chromatin is in many
instances unrestricted even for relatively large com-

plexes and dense heterochromatic regions. A recent
www.sciencedirect.com
example is the finding that RNA polymerase II is not
physically excluded from the inactive X chromosome by
phase separation or other physical barriers but can
freely access the territory delineated by the Xist
RNA [25�].

While the assembly of CSCs around certain genomic loci
leads to some confinement of their nuclear location,
they are also subject to chromatin movements. Local
chromatin motions over the entire nucleus can be
revealed from the analysis of fluorescent microscopy

image series of stained DNA with a high-resolution
diffusion mapping approach [27]. In addition, locus-
specific chromatin labeling methods were developed
to study the viscoelastic properties of chromatin
[2��,26,29]. They include dual color chromatin labeling
of separated sites to reveal correlated motions and
compaction levels from the length scale of individual
nucleosomes [2��] to large chromosomal domains that
carry labeled sites on the same chromosome [29].
Furthermore, a combination of conventional fluores-
cence and super-resolution photoactivated localization

microscopy (PALM) was introduced to resolve differ-
ences in the mobility and translocation confinement of
telomeres in relation to their compaction state [28].

Probing CSCs by targeted perturbances
Experiments that locally or globally perturb chromatin
organization provide further insight into the links be-
tween CSC properties and their biological activities.

Strategies that apply targeted perturbations and func-
tional readouts with high temporal and spatial precision
allow it to dissect the events that underlie the formation
or state transition of a CSC (Table 1).
Current Opinion in Structural Biology 2023, 83:102695
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4 3D Genome Chromatin Organization and Regulation (2023)
Comparing the activity of nuclear factors below and
above the critical concentration for the formation of
(liquid-like) condensates allows to assess the functional
consequences of non-stoichiometric protein assembly.
By fine-tuning the multivalency of transcription factors,
a recent study linked a higher propensity for multivalent
interactions to the TFs activation potential [31��]. This
relation, however, was independent of TF phase sepa-

ration since condensate formation at sufficiently high
concentrations had a neutral or inhibitory effect on
transcription. Similar results were obtained by Chong et
al. who studied the IDR-containing oncogenic fusion
transcription factor EWS::FLI1 [32��,33]. Here,
increasing the number of IDReIDR self-interactions via
the expression level led to an optimum at endogenous
concentration while above this level phase separation
and repressed transcription was observed. These find-
ings are in line with another study conducted for the
Gal4 TF in yeast. It showed that Gal4 self-interaction

can aid in DNA target search. However, indirect bind-
ing of additional TF molecules at the target site did not
enhance productive transcription but rather had a
negative effect [54]. Another study looking at oncogenic
mutations in the histone acetylation reader ENL
revealed structural changes that facilitate condensation
and oncogenic gene activation [16]. However, over-
expression of these ENL mutants can lead to the for-
mation of non-functional condensates. Thus, there
appears to be an optimal concentration of TFs and IDR-
mediated TFeTFinteractions to form active assemblies

around the chromatin template during transcrip-
tion initiation.

In addition to modulating TFassembly into condensates
via the protein concentration, ongoing efforts aim at
systematically identifying sequence features of IDRs
that determine their activity like targeting proteins into
certain types of assemblies [37,55,56]. Here, we refer to
these approaches as IDR engineering. In their simplest
form, they involve exchanging/adding IDRs or deleting
IDR parts from a protein construct to assess the effect on
genome activities like TF binding/activity [31,32,38,39],

transcription initiation [34] or heterochromatin assembly
[20]. A recently developed system combined different
approaches to target IDR-driven TF activation domain
assembly via LLPS to specific genomic loci. It displayed
efficient transcription activation of various endogenous
model genes with some differences between the IDRs of
FUS, TAF15 and DDX4 [42]. To reveal the sequence-
based “grammar” that governs IDR function, several
current studies evaluated their amino acid composition.
For the Msn2 TF, more than 100 IDR mutants were
studied with respect to the effects on its genomic target

sites [35]. This analysis revealed an important role of
multivalent interactions of hydrophobic residues for
promoter recognition. Furthermore, another study
showed an IDR-mediated selective partitioning into
MED1 condensates for gene activation [36��]. The
Current Opinion in Structural Biology 2023, 83:102695
patterning of charged amino acids in the IDR was found
to be critical for specific partitioning. By designing syn-
thetic IDRs and fusing them to functional proteins,
property engineering approaches have been imple-
mented that modulate cellular functions through
condensate formation to sequester plasmids and regulate
transcription [37].

The approach to assemble light-induced droplets
targeted to certain genomic loci [57] has been applied
and further developed in several studies. It was adapted
to target transcription factors to a reporter locus by
various dCas9-based approaches [31��]. Combining
dCas9-targeting with proximity biotinylation enables
subsequent purification and further analysis of CSCs by
proteomics and chromatin conformation capture [41].
This allows to assess changes in the folding of the
nucleosome chain and interacting proteins that arise
upon induced condensate formation. Lastly, light-

induced condensate formation was also applied to
exert capillary forces on DNA loci to measure the ma-
terial properties of chromatin [48�]. Here, two loci are
connected by the formation of a condensate between
them, which is subsequently dissociated and pulls the
two loci closer together. The latter also provides insight
into how similarity in IDR sequences influences the
interaction strength between two condensate surfaces.
Complementing these approaches is the introduction of
a method which enables rapid disassembly of user-
specified condensates [40�].

Perturbing CSC structure by treatment of cells with 1,6-
hexanediol is frequently used to conclude from the in-
duction of CSC disassembly that they form via a LLPS
mechanism. However, it is noted that 1,6-hexanediol
treatment globally weakens hydrophobic interactions
that are not specific to LLPS [23��]. Furthermore, it has
a variety of confounding effects on nuclear components.
These include the loss of selective permeability of nu-
clear pores and nuclear transport receptors [58], an in-
crease in nucleosome density [43], impairing kinases,
phosphatases and DNA polymerases [44], interfering

with enhancer-promoter interactions, organization into
A or B compartments and TAD insulation [45�] and
suppressing chromatin mobility while leading to its
hyper-condensation [43,44,45�,46]. Thus, it appears
questionable whether 1,6-hexanediol treatment pro-
vides tangible insight into the assembly mechanisms
of CSCs.

A novel approach to assess chromatin domain properties
is the targeted micromanipulation of genomic loci in
living cells with controlled and quantifiable force. Keizer

et al. used magnetic force to move a ferritin-labeled re-
porter locus to the nuclear periphery [47��]. The study
revealed micrometer chromatin locus displacements
within minutes in response to near-piconewton forces
without large-scale changes in DNA density. These
www.sciencedirect.com
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Properties of chromatin subcompartments Weinmann et al. 5
findings are consistent with a Rouse polymermodel for an
ideal chain with relatively weak additional constraints
from the local environment. The approach of viscoelastic
chromatin tethering via light-inducible condensates
mentioned above suggests that the material state of
chromatin is best described by a viscoelastic fluid-like
Jeffreys model with a high degree of heterogeneity at
the length scale studied [48�]. This view is also

supported by tracking the mobility of nucleosomes and
chromatin loci [2��,26]. It will be interesting to see how
different endogenous loci behave in point-force micro-
manipulation experiments and whether there might be
differences in the forces needed to translocate different
functional chromatin subdomains like heterochromatic
regions or transcription hubs.
Conclusions
It is becoming clear that CSCs are highly diverse with
respect to their composition, dynamics, material prop-
erties and functional roles in the cell. As reviewed here,
an increasing number of approaches become available
that sheds light on these features. However, these
methods are frequently applied in isolation to address
specific aspects of a given system. To move forward, it

will be important to define sets of complementary
readouts that can be applied to map informative CSC
features and to develop a common coordinate system for
their systematic characterization. The goal of such an
approach would be to capture both the differences be-
tween CSCs and, at the same time, also identify shared
principles according to which structure-function re-
lationships can be assigned.
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